Matriculation number................. 40070877

Module title ........coocvieeiiiiiieee Software Development 2

Module number............cccceeviee SET11103

Title of Assignment ................... Coursework: ‘Get out of my swamp’
Lecturer .......ccooveeeiiiiiiieieeee Dr J Owens

Date of Submission .................. 2012_April_24

Word count ........oeeveiiiiiieieine 3905 words

DECLARATION

| agree to work within Edinburgh Napier University’s Academic Regulations which require that any work |
submit is entirely my own. | am providing my student Matriculation Number (above) - in place of a signed
declaration - in order to comply with Edinburgh Napier University’s assessment procedures.



Matriculation number 40070877 Page 2

Software Development 2 (SET11103) Coursework: ‘Get out of my swamp’

HOW | CREATED MY SWAMP (HOW IT WORKS)

The swamp task revolves around being able to keep track of and change the locations of the ogre and
his enemies. Once this can be done, it should be fairly easy to display the swamp and its inhabitants and
to find out how many enemies are at the same location as the ogre. When the number of ‘immediate’
enemies can be found, it should then be fairly easy to program the swamp and its inhabitants to act
accordingly, i.e.

* no immediate enemies: no battle, go on to next turn

* 1 immediate enemy: battle, enemy loses and is removed from game

* > 1 immediate enemy: battle, ogre loses, is removed from game, game ends.

After a number of false starts (see page 10), | realised that the only objects which need to know the
creatures’ locations are the creatures themselves: if the creatures know their locations and have public
methods for movement, these methods can be invoked whenever the swamp/system needs. Further,
when the swamp/system needs to know where the creatures are, e.g. to draw the current state, it can
ask them, so long as the creatures’ locations are available via public methods.

Hence the first task was to create a suitable Creature class.

Creature class

This has instance variables:

» xCoordinate

» yCoordinate

* type (i.e. “OGRE” or “enemy”)

« subtype (i.e. “OGRE”, “donkey”, “parrot” or “snake”) - used to distinguish between the different types
of enemy

*  swampSize - to determine the maximum x- and y-coordinates

The class’s constructor receives and sets the coordinates and swampSize when a Creature object is
created. The necessary setters and getters are present.

Creature was initially a concrete class while but soon became abstract with descendent classes for
Ogres and different kinds of enemy.

Creature class methods

changeCoordinate()

This method is passed a coordinate and the swampSize, then calculates a new value for this coordinate.
The coordinate is randomly left as-is, incremented by 1 or decremented by 1, using a do-while loop to
keep the Creature in the Swamp.

actualMove()
This uses changeCoordinate() on the Creature’s x- and y-coordinates. A do-while loop is used to ensure
that at least one of these coordinates has changed and hence a legal move has occurred.



Page 3 Matriculation number 40070877Page 3

Software Development 2 (SET11103) Coursework: ‘Get out of my swamp’

Ogre and Enemy subclasses
These classes both receive their x- and y-coordinates and swampSize from the code that creates such

objects. However, any Ogre object sets its type and subType to “OGRE” (capitals are used to make it
easier for the user to follow the Ogre moving around the Swamp), while Enemy is an abstract class
(parent to Donkey, Parrot, and Snake). All Enemies set their types to “enemy” and their subtypes to the
type of enemy they are supposed to be.

Swamp class
This is basically a class containing an ArrayList of Creatures. It has two instance variables:

» swampSize - received from the code which creates a Swamp object, to be passed into any Creatures
it creates
* ogreAlive - so long as the ogre is alive, the game continues

When created (by a Swamplnterface), a Swamp object’s constructor automatically creates an Ogre and
adds this object to its ArrayList. Swamp class has the following methods:

Ogre creation
createOgre()

This creates an Ogre object, using a do-while loop to ensure that the Ogre is at any random location
apart from (0,0), the top-left corner of the swamp.

addOgre()
This method adds an Ogre object to the Swamp’s ArrayList. This method and createOgre() are called by
Swamp’s constructor to ensure that all new Swamp objects each have exactly 1 Ogre.

Enemy creation
addEnemylfAppropriate()

Because there is to be a 1 in 3 chance of adding an enemy and the 3 kinds of enemy have the same
chance of arriving, there is a 1 in 9 chance of any particular kind of enemy arriving

Drawing the swamp

drawSwampMap()

The method seems somewhat inefficient: each Creature in the Swamp is ‘asked’

‘Are you in (0,0)? If so, | will add your subType to the String representing that location.

Are you in (0,1)? If so, | will add your subType to the String representing that location.

Are you in (0,2)? If so, | will add your subType to the String representing that location.

Are you...’

So each Creature is asked swampSize? ‘questions’. For a large Swamp, this might become slow.

If the Swamp had consisted of gridsquares, each having its own collection of Creatures, it would be fairly
efficient to add each gridsquare’s Creatures’ subTypes to a String which would be the map.

Moving the Creatures
The moveAllCreatures() method simply tells each Creature in the swamp to move according to their
own rules.




Matriculation number 40070877 Page 4
Software Development 2 (SET11103) Coursework: ‘Get out of my swamp’

Battles

ogreXcoord(), ogreYcoord(), numberOfEnemiesinOgreCurrentLocation()

To find out whether there should be a battle, it's necessary to find out how many enemies are at the
ogre’s location, i.e. how many enemies have the same coordinates as the ogre. To do that, the ogre’s
coordinates are needed, so the ogre is ‘asked’ to supply them. This means ‘asking’ each Creature ‘if you
are the ogre, what is your x-coordinate? If you are the ogre, what is your y-coordinate?’

POSSIBLE To alleviate the resulting processing demands, it may be possible to make Ogres
IMPROVEMENT return their coordinates to instances variable within Swamp. The Swamp would still
need to ‘ask’ each enemy ‘are you at the ogre’s coordinates. If so, | will increment
the number of immediate enemies’ - making sure not to include the Ogre itself in
this number. Further, Ogre objects would need slightly different movement methods to
other Creatures, and so Swamp’s moveAllCreatures() would need a part for moving

the Ogre and another part for moving the other Creatures.

battle()
This uses numberOfEnemiesinOgreCurrentLocation() to decide whether to do nothing (0 immediate
enemies), call onlyOnelmmediateEnemy() or call more ThanOnelmmediateEnemy/().

onlyOnelmmediateEnemy(), more ThanOnelmmediateEnemy()

These both use for-each statements to find the subTypes of the ogre’s immediate enemy or enemies.

« If there is only 1 immediate enemy, removeCreature() is called to remove it from the Swamp’s
ArrayList. The user is then informed.

« If there is more than 1 immediate enemy, their subTypes are found. This is then used to inform the
user that the ogre has been beaten. The Swamp’s ogreAlive variable is then set to false, thus ending
the game.

removeCreature()

This is passed the battle’s coordinates and the subType of Creature to be removed. It uses yet another
for-each block to find the removee’s position (i.e. its index) within the Swamp’s ArrayList. Once the for-
each is finished, the resulting index used by a single line of code that removes the appropriate Creature.

It's possible for the variable indexOfCreature ToBeRemoved to have several successive values while
the for-each block is running, i.e. one for every Creature at the ‘battle site’ with the appropriate subType.
Were this to happen, the Creature with the highest index would be the one removed. However, apart
from their indices, all ‘donkeys’ (for example) at the same location are identical so it shouldn’t matter
which one would be removed. Also, because this method is only called when there is 1 immediate
enemy, indexOfCreature ToBeRemoved will only ever have 1 value apart from the initial value.



Page 5 Matriculation number 40070877Page 5

Software Development 2 (SET11103) Coursework: ‘Get out of my swamp’

Running the game

actualGame()

This method is called by Swamplinterface whenever a game is (re)started and hence a Swamp is in

action. There are three basic components:

1. The first map of the swamp and its inhabitants is drawn. For a brand-new game, this will show the
swamp contains only a brand-new Ogre. For a restarted game, this will show the Ogre and any
Enemies that have been created.

2. a do-while loop

1. calls addEnemylfAppropriate(), so a new enemy might appear at (0,0)

2. asks the user if he or she wants another go. If the user wishes to stop, the loop will be exited as
soon as possible.

3. calls battle() to decide whether to whether there should be a battle and, if so, the outcome and
consequences

4. if the Ogre is still alive, moves all the Swamp’s inhabitants by calling moveAllCreatures()

The loop is exited if ogreAlive is false, i.e. the ogre had more than 1 immediate enemy or if anotherGo

is 1/No.

3. If the do-while loop has been exited:
» ifthe Ogreis still alive, the Swamp is saved to disk and the user is taken back to the Swamplinterface
menu.
+ if the Ogre has been killed, a final map showing the positions of all Creatures when the Ogre died
is drawn

Saving the game

writeSwamp ToDisk()

This simply writes the Swamp objectto disk, using serialization. The corresponding readSwampFromDisk()
method is in the Swamplnterface because an object can’t do anything unless it exists. Specifically, a
Swamp doesn’t exist until it has been recalled from disk or created by the Swamplinterface.

INTERMITTENT | Either this method or readSwampFromDisk() has an intermittent bug. When a Swamp

BUG is read back, numberOfEnemiesinOgreCurrentLocation() occasionally ‘misfires’. In

such cases,

« an Ogre that has 1 immediate enemy ‘ignores’ it

» an Ogre that has 2 immediate enemies ‘ignores’ one of them and kills the other

* an Ogre that has 3 immediate enemies either ‘ignores’ 2 of them and kills the other
or ignores 1 of them and is killed by the other 2.

I’d be very grateful for any hint as to why this bug occurs, and why it occurs intermittently.




Matriculation number 40070877 Page 6
Software Development 2 (SET11103) Coursework: ‘Get out of my swamp’

POLYMORPHIC PROGRAMMING

Ogres and enemies all inherit the movement methods from the abstract class Creature. So when the
Swamp has to move all the Creatures, it can tell them to do so without knowing in advance what kinds
of Creature there are or anything else about them (e.g. their locations and movement methods).

Enemy is an abstract class with descendent concrete classes Donkey, Parrot etc. Because all Creatures
move in exactly the same way, it would be possible to omit the movement methods from the concrete
classes, leaving them in Creature only. However, having these methods in the concrete classes allows
the possibility of giving each kind of Creature its own movement rules, over-ruling the movement
methods in Creature.

This has been verified by changing the distance Donkeys and Snakes can move to 2 squares. (The do-
while loop in changeCoordinate() still keeps them in the swamp). This works so long as the movement
methods also remain in Creature. If they are removed from Creature, the line tempCreature.actualMove()
in Swamp’s moveAllCreatures() reports that ‘The method actualMove is undefined for the type Creature.’

A related, advantage of this polymorphism/inheritance is that it is easy to increase the number of kinds
of enemies. | have verified this by creating a class similar to an existing kind of enemy but with its own
subtype and suitably extending the switch statement in addEnemylfAppropriate().

It is almost certainly possible to do away with the subType instance variable and the Ogre and Enemy
subclasses (and Donkey, Parrot, and Snake sub-subclasses), by making Creature concrete and using
Type to record both

» whether a Creature is an Ogre or an enemy

« ifitis an enemy, what sort of enemy it is.

However, doing so would remove polymorphism and its advantages from this project.



Page 7 Matriculation number 40070877Page 7

Software Development 2 (SET11103) Coursework: ‘Get out of my swamp’

PROGRAMMING STYLE

Interfaces

* The type of interface that forces classes to implement methods is used in the different kinds of
Creature to ensure these implement actualMove() and changeCoordinate() methods. As previously
noted, these methods are currently the same throughout the project and could be removed from all
classes apart from Creature. (This would remove any need for the actualMove and changeCoordinate
interfaces.) However, to maintain extensibility, these interfaces have been left in.

» The type of interface that is separate to a class but enables interaction with it (the user-interface)
is present primarily because this programming style allows very simple applications (classes with
main() methods) and the possibility of creating other interfaces that use Swamp’s methods differently.
Good user-interfaces help improve user-experiences. (This type of interface was also a coursework
requirement.)

Exceptions
are used as follows:

In Swamp
e in writeSwampToDisk()

IOException catches IO failures, i.e. failures to write the Swamp to disk. | believe the most likely
cause of this is the user not having a folder at /Users/bruceryan/Documents/.

In Swampinterface
e in readSwampFromDisk()

» |OException catches 10 failures, i.e. failures to read from disk. The most likely cause of this is the
user not having a previously saved game in the right place. (Either the user has not saved a game
previously or the appropriate folder is now missing.)

» ClassNotFoundException. | believe such exceptions would be caused by the program trying to
use a class which is not properly available. (See http://juddsolutions.blogspot.co.uk/2008/06/tip-
causes-of-javalangclassnotfoundexce.html)

In SwampTest (the set of JUnit tests)
e in testWriteSwampToDisk()

» FileNotFoundException. This will do what it says. | thought it might be sensible to have it in
Swamp’s writeSwampToDisk() method but Eclipse informed me ‘Unreachable catch block for
FileNotFoundException. It is already handled by the catch block for IOException’

* |OException

» ClassNotFoundException

Enumerators
are not used:



Matriculation number 40070877 Page 8
Software Development 2 (SET11103) Coursework: ‘Get out of my swamp’

EXTENSIBILITY

The swamp is extensible in two ways:
» ltis easy to amend the value of swampSize (in Swamplnterface). It should be easy to add a part to
the user-interface to allow the user to decide the size of the swamp.

* As noted under ‘POLYMORPHIC PROGRAMMING’, polymorphism allows the number of kinds of
enemy to be increased fairly easily:
» Create a new class similar to Donkey or another existing kind of enemy,
* Amend addEnemylfAppropriate() along the following lines:

public void addEnemyIfAppropriate() {
//Declare variables
//chance of enemy arriving = 1 in 3
int arrivalProb = 3;

//A11 enemies have equal probability (i.e. 1 in 4)
int enemyProb = 4

//So chance of any particular enemy = 1 in (3 * 4)
int decider;

//Code
decider = (int)(arrivalProb * enemyProb * Math. randon());

switch (decider) {

case 0:
Donkey d1 = new Donkey(@, @, this.swampSize);
this.creaturesInSwamp.add(dl);
break;

case 1:
Parrot pl = new Parrot(@, @, this.swampSize);
this.creaturesInSwamp.add(pl);
break;

case 2:
Snake sl = new Snake(@, 0, this.swampSize);
this.creaturesInSwamp.add(sl);
break;

case 3:
PussInBoots pibl = new PussInBoots(@, @, this.swampSize);
this.creaturesInSwamp.add(pibl);
break;

} //end switch

} //end addEnemyIfAppropriate

* The following allows for enemies having different probabilities:
public void addEnemyIfAppropriate() {

//there is a 1-in-3 chance of an enemy each turn
//there is a 40% chance of an enemy being a donkey
//there is a 30% chance of an enemy being a parrot
//there is a

a
20% chance of an enemy being a snake
//there is a 10% chance of an enemy being a
//Hence assess chances out of 30

puss_in_boots

//Declare variables
int factor = 30;
int decider;

//Code
decider = (int) (factor * Math. random());

switch (decider) {

case 0:

case 1:

case 2:

case 3:
Donkey d1 = new Donkey(@, @, this.swampSize);
this.creaturesInSwamp.add(dl);



Page 9

case
case
case

case
case

case

[N, I

o

Matriculation number 40070877Page 9
Software Development 2 (SET11103) Coursework: ‘Get out of my swamp’

break;

Parrot pl = new Parrot(@, @, this.swampSize);
this.creaturesInSwamp.add(pl);
break;

Snake s1 = new Snake(@, @, this.swampSize);
this.creaturesInSwamp.add(sl);
break;

PussInBoots pibl = new PussInBoots(@, @, this.swampSize);
this.creaturesInSwamp.add(pibl);
break;

} //end switch
} //end addEnemyIfAppropriate

* Given that it’s fairly easy to create extra kinds of enemy, it should be possible to have a few more,
then allow the user to pick which ones to use in the game. I'd want to learn more about Swing so |
could add these choices to the Ul as checkboxes.



Matriculation number 40070877 Page 10

Software Development 2 (SET11103) Coursework: ‘Get out of my swamp’

PROBLEMS ENCOUNTERED DURING THE CODING OF THE GAME

Stumbling block 1
My initial thought was that the Swamp should be modelled by a 2-D array of gridsquares. To set this up,

| wanted to do something like

final int SIZE_LIMIT = 3;
String label;
for (int xCounter = @; xCounter < SIZE_LIMIT; xCounter++) {
for (int yCounter = @; yCounter < SIZE_LIMIT; yCounter++) {
label = Integer. toString(xCounter) + Integer.toString(yCounter);
label = “a” + label;
cridS 1 1 - GridS C : )
} //end y for-loop
} //end x for-loop

However, the underlined line does not compile.

Stumbling block 2
I next tried making my swamp a collection of Rows, each having a collection of GridSquares and each

GridSquare being able to house the ogre and his enemies. Adding an Ogre to the swamp seemed to
require code to tell the relevant Row to tell its relevant GridSquare to add the Ogre. Then finding the
Ogre seemed to require Rows to have a variable indicating the presence or absence of the Ogre.

| tried to keep things simple by modelling the numbers of Creatures as simple integer instance variables

which could be incremented and decremented as needed. This was to avoid problems when moving

Creatures. (If a Creature was an object, it would need to know where it was to calculate where it could

move to. If it changed its coordinates, it would then need to tell its original GridSquare ‘remove me’

and its destination GridSquare ‘add me'. | felt this would be problematic.) However, this approach had
problems:

» separate, but very similar, code was needed for each type of Creature.

» while working through all the GridSquares to move the Creatures, if a Creature was to move to a
GridSquare that hadn’t yet been handled, the Creature would need to go into some kind of ‘holding
pen’ in the destination GridSquare to avoid being moved on again when it was time to move this
GirdSquare’s own Creatures. At the end of the sequence of moves, the contents of the holding pens
would need to be moved into the GridSquares’ ‘real’ areas.

* This method seemed to require a lot of Exceptions, i.e. 4 for alerting if the program tried to have
negative numbers of Creatures at all, 4 for alerting if the program had negative numbers of Creatures
in its holding pens, 1 for alerting if the Swamp had more than 1 Ogre, 1 for alerting if a battle didn’t
involve an Ogre...

* Even my code for moving the Ogre was suspect:

* Anogre is placed at random:
8.0.0 Denizens 1!

(0,0y (0,1} (0,2) (0,3) Ogre,

-

a8y



Page 11 Matriculation number 40070877Page 11
Software Development 2 (SET11103) Coursework: ‘Get out of my swamp’

» A suitable number of enemies arrive in the left-most square:
800 Denizens 2!

(0,0) 3 Donkeys, 1 Parrot, 1 Snake. (0,1) (0,2) (0,3) Ogre,

Ly

* The Creatures move - but the Ogre disappears!
800 Denizens 3!

(0,0) 3 Donkeys, 1 Parrot, 1 Snake. (0,1) (0,2) (0,3)

&~

| got as far as coding Rows and making the Ogre move before | realised there was a much simpler way.

Realisation

| eventually realised (on 12 April) that | didn’t need to explicitly model the ‘places’ in the Swamp: the
Creatures themselves were the only things that needed to ‘know’ their locations. Provided they also had
rules for legal moves, they could move themselves on command. Then the system could ‘ask’ them
where they were, either to draw the Swamp or to find whether there were any enemies in the Ogre’s
location. After this, the stumbling blocks became much less fearsome: it took about half a day to write
the basic Creature and Swamp, including the methods to add and move Creatures and to count how
many immediate enemies the Ogre had.

Stumbling block 3
My initial method to remove a Creature was

public void removeCreature(int xCoord, int yCoord, String subTypeToBeRemoved) {
//Declare variables
int indexOfCreatureToBeRemoved = 200000000,

//Code
for(Creature tempCreature : creaturesInSwamp) {
if ( tempCreature.getxCoord() == xCoord
&& tempCreature.getyCoord() == yCoord
&& tempCreature.getSubType() == subTypeToBeRemoved) {
this.creaturesInSwamp.remove(indexOfCreatureToBeRemoved);
} //end if
} //end removeCreature

This almost always crashed. It took several hours to work out that the for-each block needed to finish
before the removal step took place. (I also took a while to remember that indices start at O - this led to
some lost time.)

Stumbling block 4
My methods were typed in the order I'd realised | needed them. They were long and messy, so finding

the bits that needed to change was problematic. My solution was order the methods logically, using
/** comments */ to break up the code into ‘chapters’, then invest time in refining and reducing the
number of methods.



Matriculation number 40070877 Page 12

Software Development 2 (SET11103) Coursework: ‘Get out of my swamp’

Stumbling block 5
Occasionally my Ogre killed himself, crashing the program. | realised this was because | wasn’t checking

the who was fighting whom properly. This is part of the reason for having both fype and subType.

Stumbling block 6
I noticed a bug in the save and restore methods - after a restore, the system intermittently miscounts the

number of immediate enemies. (See also page 5). Despite spending 2 days trying to find and eliminate
the cause, this bug is still present. I've tried saving the Swamp itself or just its ArrayList, and putting
JOptionPane statements after every line so | can watch the program in ‘slow motion’. | did notice that
moveAllCreatures() appearing to call moveCreature() in Creature at least twice per Creature. An exact
multiple would be more understandable.

Stumbling block 7: JUnit tests
Testing methods that return booleans

During development, | had a separate method to decide whether an enemy should be added. This
method randomly returned true or false. Because the returned value is random, it is only possible to
test that it is one of true or false. It would be possible to test whether the method returned the same
value 50 times in a row. (The probability of this is around 1 in 10'%.) However, it's not impossible for this
to happen. Fortunately, | was able to take this random decision into another method which was more
properly testable.

Testing drawSwampMap()
It was frustrating to find that in Java (“AB” = “AB”) = false! That is, two identical looking strings are
apparently not equal. My proof of this is the following:

public class testString {
public static void main(String[] args) {
String piecel = “donkeyOGREsnake”;
String piece2 = “donkeysnake”;
String piece3 = piecel.replace(“OGRE”, “”);
if (piece3 == piece2) {
System. out.println(“equal”);

}
else {

System. out.println(“NOT EQUAL”);
1
System. out.println(“piece2: “ + piece2);
System. out.println(“piece3: “ + piece3);

} //end main
} //end class

Running this gives
NOT EQUAL

piece2: donkeysnake
piece3: donkeysnake

Fortunately, | eventually found the assertEquals command.

Testing moveAllCreatures()

I’m not convinced this test goes far enough - it only tests whether 1 ogre has moved.

Testing Battle(), onlyOnelmmediateEnemy(), more ThanOnelmmediateEnemy and actualGame()(
Because these will display JOptionPanes to tell a user that an Ogre has killed something or has been
killed, it seems reasonable to warn the tester. Is this good practice? actualGame requires the tester runs
through a complete game. Again, is this good practice?




Page 13 Matriculation number 40070877Page 13

Software Development 2 (SET11103) Coursework: ‘Get out of my swamp’

Stumbling block 8: flow of control and user-interface
At first, my interface had a dialog which required the user to enter a choice (1 to display instructions, 2 to

start a new game, 3 to recall a previously saved game and 4 to exit). It was easy to trap invalid numeric
input, using a while loop and techniques from last semester. It was also easy to trap non-numeric input
using NumberFormatException.

However it wasn't easy to do both simultaneously and reliably. If the user first entered non-numeric
input, he or she would receive first a response that the input was non-numeric, then a response that
the input should be a number between 1 and 4. If the user then entered 1, he or she would then see
the instructions, then be taken back to the main menu. If the user then entered another invalid input,
the instructions would be displayed again, followed by the main menu. This was not the flow | wanted:

|

display

menu

single,
ppropriat
response

is
user input
numeric,

Y

run game

The answer was to remove any chance of inappropriate user-input. Fortunately, | had been looking fro
a way to replace the standard Java dialog icons with something more appropriate to this game and
had found this: http://docs.oracle.com/javase/tutorial/uiswing/components/dialog.html. While | didn’t get
icons to work - | think | need to understand package and Java file systems better - | was able to build a
dialog with customised buttons. So now the flow is

display
instructions

display
Exit<¢———— Ul with
buttons

brand- recall
new saved
game game

L

finish current game
OR

save and pause current game

| now see the value of graphical Uls and menus to the programmer as well as to the user.



